
Weevil User Manual

Yanyan Wang

Software Engineering Research Laboratory
Department of Computer Science

University of Colorado
Boulder, Colorado 80309-0430 USA

ywang@cs.colorado.edu

c© 2003–2004 Yanyan Wang

1 Weevil

A particular experiment is related to three primary concepts: the system under experimentation (SUE), the testbed
and the actor. An actor maps a client to its system access point and actuates the SUE as dictated by the client’s
workload. An experiment can be understood as a two-phase process in which (1) a workload is generated for the
actors, (2) the SUE is deployed on the testbed with the actors actuating it based on the workload and the results are
collected afterward. Weevil supports the two-phase process through a central-controller architecture in which a master
script controls the whole process. Workload generation is conducted on the master’s host as presented in Section 2. In
the experiment deployment and execution phase (described in Section 3) the master generates all the controls, deploys
them together with the workload and the SUE on the testbed, coordinates all the system components and the actors to
execute the experiment, and gathers data after the experiment terminates. The two programweevilgenandweevil, are
for workload generation and experiment deployment and execution respectively.

Throughout the following sections, we refer to the Siena example and the Squid/Apache example included in the
prototype distribution undershare/weevil-1.0.0/examples.

2 Simulation-Based Workload Generation

Weevil’s simulation-based workload generation process supported by the packageweevilgenis illustrated in Figure 1.

a3.c

actor
behavior

actor
configuration

a2.c

discrete−event
simulation library

weevil workload−
generation library

workload scenario

time actionactor

a12 10 sub...
23 pub...

...
b5

scenario
definition

simulation
program

unified
workload

a.cc

simulation execution

simulation setup

Figure 1: Simulation-Based Workload Generation

In detail, the following steps need to be taken in order.

2.1 Weevilgen Configuration (Workload Registration)

Create a name for the workload (refered to as<workload name> below), like “MyWorkload ” in the Siena example;
add the name into “weevil.conf” file after “weevilgen WORKLOADS:=”. You could have more than one workload
registered in “weevil.conf” separated with space, as indicated in the apachesquid example. To start a new line,\ is
needed to end the current line. Weevilgen only generates workloads that have been registered in “weevil.conf”.

For example, in file “weevil.conf” of the Squid/Apache example we registered a series of workloads:

weevilgen_WORKLOADS := wkld_10_10_10 wkld_20_20_20 wkld_30_30_30 \
wkld_50_50_50 wkld_100_100_100 wkld_150_150_150 wkld_200_200_200 wkld_30 \
wkld_60 wkld_90 wkld_150 wkld_300 wkld_450 wkld_600 wkld_tp wkld_gsl

1

Then, to generate each workload, Weevil must be provided with programmed actor behavior models as illustrated
in Section 2.2 and an actor configuration file named “<workload name>.m4” including all the actor configurations as
illustrated in Section 2.3.

2.2 Actor Behavior Model Programming

One or more types of actor behaviors could be programmed in C++ with the support of Weevil’s workload-generation
library and SSim simulation library, and may therefore execute arbitrary functions and maintain arbitrary state. SSim
is a discrete-event simulation library that supports message communication between simulated processes, so actor be-
havior programs may specify interactions with other actors. Weevil’s workload-generation library extends the SSim’s
library by providing a workload-output method and convenient methods for dealing with processes by ids. Please
refer to theWeevil’s workload-generation libraryand theSSim’s simulation libraryin the reference manual when
programming your actor behavior model.

Basicly, actor behavior is encapsulated in a subclass of theweevil::WeevilTProcess class or theweevil::
WeevilProcess class. weevil::WeevilTProcess , which is asequential process, is the extension of the
ssim::TProcess class. A sequential actor behavior is defined simply by programming themain method, which
defines the body of the process directly. A process can use theWeevilGen::broadcast event , WeevilGen::
self signal event andWeevilGen::signal event method defined in Weevil’s library to signal itself or
other processes, and thewait for event method to receive events.

In contrast,weevil::WeevilProcess , which is areactive process, is the extension of thessim::Process
class. It is used when the process may have other reactive behaviors in parallel to its routine behaviors. A re-
active actor behavior is defined by programming theinit and theprocess event methods. Init initiates
the process just before the simulation starts.Process event is called automatically by an event and defines
the functions executed by the process in response to an event. Same as theweevil::WeevilTProcess , the
event can be signaled using theWeevilGen::broadcast event , WeevilGen::self signal event and
WeevilGen::signal event methods.

Both of the above two types of processes can use the methodworkload output() to output actions to the
workload. As examples of the usage of these two types, we consider the following two types of interdependent
behaviors.

2.2.1 Intra-Actor Interdependent Behavior

One type of interdependent behavior is one where future requests need to incorporate data from a previous request.
As an example, consider a distributed publish/subscribe system where actors use an access point to publish notifica-
tions and subscribe for notifications of interest. A common behavior for a subscriber actor could be to periodically
subscribe and unsubscribe, with every unsubscription matching the previous subscription, then continue with the
next subscription. We implemented this behavior inexamples/siena/subscriber.cc. (It is used to generate workload
wkld sequential.wkld.) Notice that in this case, the behavior is represented as a sequential process class and is defined
simply by programming themain method of that class.

Similarly, Weevil can easily generate workloads for various types of session-oriented protocols, where actors
maintain a virtual connection with the system by providing an immutable session identifier throughout their interaction
with the system.

2.2.2 Inter-Actor Interdependent Behavior

Another type of interdependent behavior is one where actors communicate and coordinate their interactions with
the SUE. We consider a scenario in which three siena clients are involved. They have their routine behaviors. C1
subscribes 50 times, C2 publishes 40 times, and C3 publishes 20 times. Besides, they also communicate and may have
reactive actions triggered by others.

To generate a workload, we consider each client as a reactive workload processSienaClient , the subscription,
notification, and unsubscription as the possible actions of that process to be outputed to a workload file. The commu-
nication between clients is represented by aTrigger object. The configuration of each workload process consists

2

of the number of its routine actions, the intervals between actions, those parameters used to generate the content of
subscriptions and notifications, and the list of clients to whom the current client will trigger after its own action.

The code to implement this behavior model could be found inexamples/siena/sienaclient.cc. (It is used to generate
workloadMyWorkload.wkld.) Notice that in this case, the behavior is defined as a reactive process by implementing
the init andprocess event methods. TheTrigger class represents an event signaled to a simulation process.
The init method initializes workload processes just before the simulation starts but after the assignment of process
properties. Notice also that the configuration of each workload process is implemented with the help of actor config-
urations described later in Section 2.3. Corresponding to each property declared in the actor configurations, a class
variable and a class function need to be defined in the behavior program, such as,

//class variable
unsigned int m_constr_min;
//class function
void constr_min(unsigned int cmin)
{ m_constr_min = cmin; }

in the file “sienaclient.cc” corresponds to the property configuration

WVL_SYS_WorkloadProcessProp(‘C1’, ‘constr_min’, ‘1’)dnl
WVL_SYS_WorkloadProcessProp(‘C2’, ‘constr_min’, ‘2’)dnl
WVL_SYS_WorkloadProcessProp(‘C3’, ‘constr_min’, ‘1’)dnl

in the actor configuration file “MyWorkload.m4”.

2.3 Actor Configurations

After programming the actor behavior models, you can populate a scenario consisting of many actor instances specified
in the actor configuration file named “<workload name>.m4”. The actor behavior models and the actor configurations
make up a workload scenario definition.

ExternalLibrary

+ ID : String
+ cflags : String
+ libs : String
+ path : String

WorkloadProcessType

+ ID : String
+ srcFiles : String[]

WorkloadProcess

+ ID : String
+ props : Property[]

WorkloadScenario

+ stoptime : int
+ ID : String

Figure 2: Workload Scenario Conceptual Model

Figure 2 shows the portion of the Weevil conceptual model concerning the definition of workload scenarios. You
need to parameterize the following GNU m4 declaration macros in the actor configuration file. The order of the
declarations does not matter. A macro can be used before it is defined as long as it is defined somewhere in the actor
configuration file. Weevil supports the engineer during this activity by performing extensive checks on the syntax and
consistency of the configurations and by providing detailed error messages about any problems it encounters.

• WVLSYS WorkloadScenario(<ID >, <length >, <processes >)

A WorkloadScenariohas an identifier and a collection ofprocesses. The argument<length > defines the
number of clock ticks in the simulation. If you define this argument, the simulation will end as long as the
clock-tick number is reached even if the actors have not finished their work. For example,

3

define(‘clients’, ‘C1, C2, C3’)dnl
WVL_SYS_WorkloadScenario(‘MyWorkload’, ‘10000’, ‘clients’)dnl

• WVLSYS WorkloadProcessType(<ID >, <sourceFiles >, <libraries >)

A WorkloadProcessTypedefines an actor behavior model in a list ofsourceFilesas described in Section 2.2,
and may be associated with a collection oflibraries that contain external dependencies of the implementation.
Please note that none of the file names of the .cc files in thesourceFileslist can be the same as the workload name
you registered in theweevil.confsince a<workload name>.cc will be generated in the workload generation
process. The source files should list all the C++ files in the order of file inclusion. For example,

WVL_SYS_WorkloadProcessType(‘SienaClient’, ‘gen_message.h, gen_message.cc, sienaclient.cc’, ‘’)dnl

In this example, instead of adding the statement#include ‘‘gen message.h’’ in bothgenmessage.cc
andsienaclient.cc, we only need to putgenmessage.hbeforegenmessage.ccandsienaclient.ccin the<source
files> parameter of this declaration macro.

The Squid/Apache’swkld gsl example that generates workloads based on analytic models uses the GNU scien-
tific library libgsl declared later:

WVL_SYS_WorkloadProcessType(‘AnalysisBrowser’, ‘analysisbrowser.cc’, ‘libgsl’)dnl

• WVLSYS ExternalLibrary(<ID >, <cflags >, <libs >, <path >)

This declaration defines the usage of an external library, including its cflags, its libs, and the path to add into the
environment variableLD LIBRARYPATH. For example, the external library “libgsl” used above is declared as
follows:

WVL_SYS_ExternalLibrary(‘libgsl’, ‘-I/usr/include -L/usr/lib’, ‘-lgsl -lgslcblas -lm’, ‘/usr/lib’)dnl

• WVLSYS WorkloadProcess(<ID >, <type >)

EachWorkloadProcessrepresents an actor, which is an instance of aWorkloadProcessType. For example,

define(‘clients’, ‘C1, C2, C3’)dnl
WVL_SYS_Foreach(‘i’, ‘WVL_SYS_WorkloadProcess(i, ‘SienaClient’)’, clients)dnl

defines three instances of theWorkloadProcessTypeSienaClient (C1, C2, C3).

• WVLSYS WorkloadProcessProp(<workloadProcessID >, <name>, <value >)

This declaration macro is used to configure each defined process. Corresponding to each property, a class
variable and a class function need to be defined in the actor behavior program to assign the value of the prop-
erty to the class variable. Besides the example we gave in Section 2.2, another example could be the prop-
erty“sub neighbors ”:

4

WVL_SYS_WorkloadProcessProp(‘C1’, ‘sub_neighbors’, ‘"C2 PUB 3 0.02|C3 SUB 2 0.01|"’)dnl
WVL_SYS_WorkloadProcessProp(‘C2’, ‘sub_neighbors’, ‘"C3 SUB 2 0.02|"’)dnl
WVL_SYS_WorkloadProcessProp(‘C3’, ‘sub_neighbors’, ‘"C1 PUB 5 0.01|"’)dnl

corresponds to the class variable “msub neighbors ” and function “sub neighbors ” in program “sien-
aclient.cc”. The function “sub neighbors ” parses the string in the parameter<value > to assign the
variable “msub neighbors ”.

2.4 workload generation

With the actor behavior models programmed and actor instances configured for a workload scenario, Weevil checks
them for consistency and then translates them into an executable simulation program that is linked with the libraries
and then executed to produce the desired workload named “<workload name>.wkld”. The workload consists of
all interactions between actors and the SUE. These interactions represent service calls that must be applied to the
SUE during experiment execution. This process is accomplished through the command “weevilgen gen-<workload
name>”.

examples/apachesquid> ${execPath}/weevilgen help
Welcome to WEEVIL WORKLOAD GENERATOR.

The following commands are available:

check-all - checks all workloads.
check-<workload> - checks a workload’s settings.
clean-all - cleans files for all workloads.
clean-<workload> - removes all generated files for a workload.
help - prints this help message
gen-all - generates all workloads.
gen-<workload> - generates a workload.
version - prints the version of weevil workload generator

The following workloads are available:

wkld_10_10_10 wkld_20_20_20 wkld_30_30_30 wkld_50_50_50
wkld_100_100_100 wkld_150_150_150 wkld_200_200_200 wkld_30 wkld_60
wkld_90 wkld_150 wkld_300 wkld_450 wkld_600 wkld_tp

examples/apachesquid> ${execPath}/weevilgen gen-wkld_10_10_10

Besides the “gen-<workload name>” option, you can also use the other options listed above for different func-
tions.

3 Experiment Deployment and Execution

Weevil directly supports experiment deployment and execution. The overall process is depicted in Figure 3. Actions
are represented by rectangles and are labeled by circled numbers. Input and output data for those actions are repre-
sented by ovals. Dark ovals represent input models provided by the engineer. White ovals represent data generated by
Weevil or by the SUE during experiment. Solid arrows represent normal input/output data flow, whereas dotted arrows
represent the execution of scripts.

The following steps need to be taken to setup and conduct an experiment.

3.1 Weevil Configuration (Experiment Registration)

Create a name for the experiment (refered to as<experiment name> below), like ”experiment ” in the siena ex-
ample; add the name into ”weevil.conf” file after ”weevil EXPERIMENTS:=”. You could have more than one

5

2 1 3

script
master

4 7

test data
per−machine

5

6

testbed
host

mappingSUE

makefile gen.
partitioning
workload

start/stop
scripts

script gen.

unified
workload mapping

actor

actor
workloads scripts

cleanup

deployment cleanup

execution

log files

data collection

experiment configuration file

makefile

Figure 3: Weevil Experimentation Process

experiment registered in ”weevil.conf” separated with space, as indicated in the apachesquid example. To start a new
line, \ is needed to end the current line. weevil only conducts experiments that have been registered in ”weevil.conf”.

For example, in file “weevil.conf” of the Squid/Apache example we defined a series of experiments:

weevil_EXPERIMENTS := exp_10_10_10 exp_20_20_20 exp_30_30_30 \
exp_50_50_50 exp_100_100_100 exp_150_150_150 exp_200_200_200 exp_30 \
exp_60 exp_90 exp_150 exp_300 exp_450 exp_600

For each experiment, Weevil must be provided with a workload file (refer to Section 3.2) and an experiment config-
uration file named “<experiment name>.m4” including all the experiment configurations as illustrated in Section 3.3.

3.2 Workload File

You can generate the workload file withweevilgen. Of course, you can always use workloads from other workload
generators or just use a real trace as the workload. But please note that the workload should be made up of workload
lines with the following format:

event(<time stamp>, <workload process ID>, ‘<event content>’)

3.3 Experiment Configurations

These configurations are represented by the dark ovals along the top of Figure 3. They are programmed in GNU m4
by parameterizing Weevil-defined declaration macros (Please refer to the “Weevil’s Experiment Environment Decla-
ration Macros”) to instantiate elements of two conceptual models (SUE and testbed) and necessary mappings (Please
refer to the “Weevil’s Experiment Environment Conceptual Models”). In other words, these declaration macros will
define a set of macros serving as properties of an experiment. (Please refer to the “Weevil’s Experiment Environment
Declaration Macros” and the “Some Other Weevil-Defined Property Macros”) for these property macros.) The order
of the declarations does not matter. A macro can be used before it is defined as long as it is defined somewhere in

6

the experiment configuration file. Weevil supports the engineer during this activity by performing extensive checks
on the syntax and consistency of the configurations and by providing detailed error messages about any problems it
encounters. These declaration macros are defined below:

Experiment WVLSYS Experiment(<ID >, <workload >, <actors >, <testbed >, <sue >,
<componentHosts >)

This declaration macro defines the experiment to be conducted, including its workload, actor mapping, testbed,
SUE, and host mapping. All of these properties will be specified using further declaration macros. Note that theID
of an experiment can be different from the experiment name you registered in the “weevil.conf” file. For example, the
experiment with name “experiment” in Siena example is defined as:

WVL_SYS_Experiment(‘Exp_0’, ‘MyWorkload’, ‘D0, D1, D2’, ‘Bed0’, ‘Siena’, ‘CHMap0, CHMap1, CHMap2’)dnl

Workload WVLSYS Workload(<ID >, <filename >, <processes >)
This declaration macro further specifies the workload. It accociates the workload ID with a specific workload file.

It also points out the workload processes included in the workload. For example, the workload in Siena example is
defined as:

WVL_SYS_Workload(‘MyWorkload’, ‘MyWorkload.wkld’, ‘C1, C2, C3’)dnl

Testbed Model Weevil makes minimal assumptions about the testbed. It only requires an account on each host
accessiable through user-level remote shell access. As shown in Figure 4, The current prototype only supports local
network testbed made up of a collection ofHosts.

Testbed

+ ID : String
Host

+ ID : String
+ address : String
+ account : String
+ bourneShellPath : String
+ javaPath : String
+ weevilRoot : String
+ props : Property[]

HostType

+ ID : String

Figure 4: Testbed Conceptual Model

The declaration macros included in this model are:

• WVLSYS Testbed(<ID >, <type >, <hosts >, <slice >, <user >)

We are planning to apply Weevil to other emulated testbed and the Planetlab. So the<type> will be chosen
from “Local”, “ Emulated”, and “Planetlab”. But only “Local” is available in the current prototype. Please use
“Local” for <type> all the time. The last two parameters are only useful for the “Planetlab” testbed in the
future. So just ignore them for now. For example,

WVL_SYS_Testbed(‘Bed0’, ‘Local’, ‘H0, H1, H2’)dnl

• WVLSYS HostType(<ID >)

ThehostTypeattribute is used to partition the hosts into categories that each of them has its own binary package
of the SUE. For example, a software may have different binary packages if it is compiled on different operating
systems. So you should just create an ID for the host type and define it through this declaration macro. Then
this ID could be used later in theWVL SYSHostmacro. For example,

7

WVL_SYS_HostType(‘FreeBSD’)dnl
WVL_SYS_HostType(‘Linux’)dnl

• WVLSYS Host(<ID >, <address >, <account >, <bourneShell >, <java >, <weevilRoot >,
<type >)

Eachhost in a testbed is actually anaccounton a networkaddress. Weevil’s execution requires bourneShell.
Thus for each host, you must provide the local path to thebourneShellprogram. Some SUEs use Java actor
program, thus they need path to theJavaprogram.<weevilRoot > specifies the location on the host where
Weevil stores temporary files during the experiment. At last, through assigning a host to a specific hosttype, the
proper software binary distribution could be used.

• WVLSYS HostProp(<hostID >, <propertyName >, <propertyValue >)

Besides the above required properties, Ahostcan also have an optional list of properties that can be used to
contain any system-specific information that must be known for each host.

• WVLSYS Slice(<ID >, <name>)

• WVLSYS User(<ID >, <authmethod >, <username >, <authstring >)

These two declarations are both used for “Planetlab” testbed. You need not use them for the current prototype.

SUE Model The conceptual model of an SUE is shown in Figure 5.

Component

+ID:String
+props:Property[]

+ID:String

Order

+sequence:String
+ ID:String

SUE

Relation

+ID:String
+name:String
+src:Component
+dest:Component
+props:Property[]

ComponentType

+ID:String
+startScript:String
+stopScript:String

+logs:String
+props:Property[]

+config:String

Figure 5: SUE Conceptual Model

The declaration macros included in this model are:

• WVLSYS SUE(<ID >, <components >, <relations >, <order >)

An SUE is comprised of typedComponents, relationsbetween them, and theorder to start up. Therelations
and theorder are optional arguments. For example,

WVL_SYS_SUE(‘Siena’, ‘S0, S1, S2’, ‘R10, R20’, ‘Order’)dnl

• WVLSYS ComponentType(<ID >, <startScript >, <stopScript >, <config >, <logs >)

There could be different types of components in an SUE, such as Apache servers and Squid proxies in the
Squid/Apache experiments. All the instances of a particular ComponentType tend to share the same formats
of start/stop commands and configuration files. They also share the same log file names. Thus, for each each
ComponentType, you should define itsstartScriptandstopScript, and optionally aconfigattribute that contains

8

the contents of a configuration file. You can specify a list of files in<logs > for Weevil to copy from each
component’s workspace to the master after the experiment terminates. All the Weevil-defined property macros
can be referenced in these parameters, and are resolved during script generation using m4’s macro expansion.
(Please refer to the reference manual for the Weevil-defined property macros.)

The following example is for the experiments of Squid/Apache system. There are two types of components,
ApacheServer andSquidProxy . Apache could be started under itsbin directory through the command
“apachectl -k start”, while Squid could be started under itssbin directory through command “squid -N -d
1”. Thus we definedApacheServer startScript , SquidProxy startScript with some macros
to customize to different components. Similar for their stop scripts. Apache and Squid are both config-
ured through configuration files. Thus, we changed their default configuration files by adding macros to
it to customize to different components. (Please refer to filesexamples/apachesquid/httpd.confand exam-
ples/apachesquid/squid.conf.)

WVL_SYS_ComponentType(‘ApacheServer’, ‘ApacheServer_startScript’, ‘ApacheServer_stopScript’, dnl
‘‘include(‘httpd.conf’)’’, dnl
‘theCompPath/WVL_Experiment_Name‘_’WVL_Component_ID‘_error.log’, dnl
theCompPath/WVL_Experiment_Name‘_’WVL_Component_ID‘_access.log’’)dnl

WVL_SYS_ComponentType(‘SquidProxy’, ‘SquidProxy_startScript’, ‘SquidProxy_stopScript’, dnl
‘‘include(‘squid.conf’)’’, dnl
‘theCompPath/WVL_Experiment_Name‘_’WVL_Component_ID‘_access.log’, dnl
theCompPath/WVL_Experiment_Name‘_’WVL_Component_ID‘_cache.log’, dnl
theCompPath/WVL_Experiment_Name‘_’WVL_Component_ID‘_store.log’’)dnl

dnl
dnl -----ApacheServer Start/Stop Script-----
dnl
define(‘ApacheServer_startScript’, dnl
‘cd WVL_SYS_Echo(‘WVL_Host_’WVL_SYS_Echo(theHost)‘_apacheRoot’)/bin
./apachectl -k start -f theCompPath/WVL_Experiment_Name‘_’WVL_Component_ID.conf &’)dnl

define(‘ApacheServer_stopScript’, dnl
‘cd WVL_SYS_Echo(‘WVL_Host_’WVL_SYS_Echo(theHost)‘_apacheRoot’)/bin
./apachectl -k stop -f theCompPath/WVL_Experiment_Name‘_’WVL_Component_ID.conf’)dnl

dnl
dnl -----SquidProxy Start/Stop Script-----
dnl
define(‘SquidProxy_startScript’, dnl
‘rm -rf WVL_SYS_Echo(‘WVL_Host_’WVL_SYS_Echo(theHost)‘_squidRoot’)/var/cache
WVL_SYS_Echo(‘WVL_Host_’WVL_SYS_Echo(theHost)‘_squidRoot’)/sbin/squid -z
WVL_SYS_Echo(‘WVL_Host_’WVL_SYS_Echo(theHost)‘_squidRoot’)/sbin/squid dnl
-N -d 1 -f theCompPath/WVL_Experiment_Name‘_’WVL_Component_ID.conf &’)dnl

define(‘SquidProxy_stopScript’, dnl
‘read pid <theCompPath/WVL_SYS_Echo(WVL_Experiment_Name)‘_’WVL_Component_ID.pid
echo $pid
kill $pid’)dnl

• WVLSYS ComponentTypeProp(<componentTypeID >, <propertyName >, <propertyValue >)

ComponentTypeallows system-specific properties to be assigned to all the instances of this type.

• WVLSYS Component(<ID >, <Type >)

This declaration just defines each component of the SUE as an instance of a componenttype. For example,

WVL_SYS_Component(‘S0’, ‘ApacheServer’)dnl
define(‘Proxies’, ‘P0, P1, P2’)dnl
WVL_SYS_Foreach(‘i’, ‘WVL_SYS_Component(i, ‘SquidProxy’)’, Proxies)dnl

9

• WVLSYS ComponentProp(<componentID >, <propertyName >, <propertyValue >)

Componentallows system-specific properties to be assigned to it.

For example,

WVL_SYS_ComponentProp(‘S0’, ‘Port’, 4321)dnl
WVL_SYS_ComponentProp(‘S1’, ‘Port’, 5432)dnl
WVL_SYS_ComponentProp(‘S0’, ‘Protocol’, ‘ka’)dnl
...

• WVLSYS ComponentRelation(<ID >, <name>, <src >, <dest >)

TheRelationscontained in an SUE model are used to represent any binary associations between components.
These are optional and entirely system specific. For instance, in the Squid/Apache example, the proxies works
cooperatively. Thus, each proxy component has all the other proxy components as its siblings.

WVL_SYS_ComponentRelation(‘RP0P1’, ‘sibling’, ‘P0’, ‘P1’)dnl
WVL_SYS_ComponentRelation(‘RP0P2’, ‘sibling’, ‘P0’, ‘P2’)dnl
WVL_SYS_ComponentRelation(‘RP1P0’, ‘sibling’, ‘P1’, ‘P0’)dnl
WVL_SYS_ComponentRelation(‘RP1P2’, ‘sibling’, ‘P1’, ‘P2’)dnl
WVL_SYS_ComponentRelation(‘RP2P0’, ‘sibling’, ‘P2’, ‘P0’)dnl
WVL_SYS_ComponentRelation(‘RP2P1’, ‘sibling’, ‘P2’, ‘P1’)dnl

• WVLSYS ComponentRelationProp(<componentRelationID >, <propertyName >, <propertyValue >)

This declaration macro defines any other properties related to aRelation.

• WVLSYS ComponentOrder(<ID >, <sequence >)

The order contained in an SUE model are used to represent the necessary (or preferred) order to start all the
components. This is optional and entirely system specific. Some SUEs require some components to be ready
before other components, such as Siena. It requires a parent server to be ready before its children start (since
they need to communicate with their parent server as soon as they start). Then you should specify the start order
of all the components like,

WVL_SYS_ComponentOrder(‘Order’, ‘S0, 3, S1, 0, S2, 0’)dnl

In this example,S0 is the parent ofS1 and S2. Please refer to the format of the second argument of this
declaration macro. Components are listed in the start order separated with commas. The number between
successive component IDs represents the time to wait to start the next component. The number after the last
component ID represents the time to wait to start actors. It is useful if a component needs some time to get
ready. It can be zero if the start process is very quick or the order of the successive components does not matter
(like S1 andS2 in this example).

But for other SUEs, the order does not matter. For instance, in the Squid/Apache example, the proxies works
cooperatively. But it does not require a component’s sibling to start before it. Then you need not declare the
order with this declaration macro. Weevil will start all the components in the order they are defined. Of course,
you can always specify a preferred order in such cases.

10

Mappings The two models described above and the workload are largely independent. This independence means
that they can be composed together in many different combinations by providing two mappings between them.

The first mapping simply associates eachcomponentin the SUE with ahostin the testbed. Weevil is quite flexible
in this regard since a single host can serve multiple components.

• WVLSYS ComponentHost(<ID >, <component >, <host >)

For example,

WVL_SYS_ComponentHost(‘CHMap0’, ‘S0’, ‘H0’)dnl

• WVLSYS ComponentHostProp(<componentHostID >, <propertyName >, <propertyValue >)

If there is any extra limitation related to a component-host mapping. You could specify it here.

• WVLSYS ComponentHostType(<componentTypeID >, <hostTypeID >, <binaryDistDir >)

This declaration macro maps a ComponentType to a HostType. Since the same type of components share the
same binary distribution for the same type of hosts. Thus, For each ComponentType-HostType pair, if the
software is installed through copying its binary distribution from the master machine to the testbed hosts, this
macro needs to be called to assign a different binary distribution for each ComponentType-HostType pair. For
example,

WVL_SYS_ComponentHostType(‘SienaServer’, ‘FreeBSD’, ‘/scratch/software/Siena’)dnl
WVL_SYS_ComponentHostType(‘SienaServer’, ‘Linux’, ‘/scratch/software/Siena’)dnl

The values of<binaryDistDir > are the same since Siena has the same binary distribution for FreeBSD
machine and Linux machine.

• WVLSYS ComponentHostTypeProp(<componentHostID >, <hostTypeID >, <propertyName >,
<propertyValue >)

This declaration macro defines any other properties related to a ComponentType-HostType mapping.

The second mapping associates each workload process with a component through an actor. Each workload process
must be represented by a single component, but any number of workload processes can be associated with a particular
component through actors.

• WVLSYS ActorProgram(<ID >, <style >, <binaryDistDir >, <program >, <argument >,
<classpath >)

An actor is implemented as a system-specific program that understands how to actuate the SUE as dictated by
the workload line. In other words, you are expected to implement the function of parsing a workload line and
sending out a corresponding system command. The program can also receive arguments as configured in the
<argument > parameter. You can choose fromJava andShell for the<style > parameter to implement
the program in Java or in shell script. Weevil provides a library to support its implementation in Java. (Please
refer to the reference manual.) Otherwise, if you are implementing a shell script actor program, and you haven
arguments, then$i (i=1,. . . ,n) represents theith argument. $(n+1) represents the workload line to parse. (Please
refer to theexamples/apachesquid/actor/apachesquidactor.shas an example.) The<binaryDistDir > is to
specify the location of the actor<program >. If it is a Javaactor, then you should put the Java classname
in the<program > parameter; otherwise, you should put the shell script file name in it. The last parameter
<classpath > is used when the execution of the Java actor program needs extra classpaths.

For example, the shell script actor program declaration in Squid/Apache example is like:

11

WVL_SYS_ActorProgram(‘DrProgram0’, ‘Shell’, ‘./actor’, ‘apachesquidactor.sh’, ‘ApacheSquidActor_args’)dnl
dnl
define(‘ApacheSquidActor_args’, ‘dnl
WVL_SYS_Echo(‘WVL_Host_’theHost‘_executablePath’)/bin dnl
WVL_SYS_Echo(‘WVL_Host_’theHost‘_address’) WVL_SYS_Echo(‘WVL_Component_’theComponent‘_Port’) dnl
theActorPath’)dnl

The Siena’s Java actor program needs the class definition in Siena software, thus:

WVL_SYS_ActorProgram(‘DrProgram1’, ‘Java’, ‘./actor’, ‘SienaActor’, ‘SienaActor_args’, ‘SienaActor_classpath’)dnl
dnl
define(‘SienaActor_args’, ‘WVL_SYS_Echo(‘WVL_Component_’theComponent‘_Protocol’) dnl
WVL_SYS_Echo(‘WVL_Host_’theHost‘_address’) WVL_SYS_Echo(‘WVL_Component_’theComponent‘_Port’) dnl
WVL_SYS_Echo(‘WVL_Actor_’WVL_Actor_ID‘_Port’)’)dnl
dnl
define(‘SienaActor_classpath’, ‘theSoftwarePath/siena-1.5.1.jar’)dnl

• WVLSYS Actor(<ID >, <workloadProcess >, <program >, <component >)

This declaration macro maps a<workloadProcess >to a<component > through the actor<ID > imple-
mented as the actor program<program >. For example, the Squid/Apache actorD0 can be defined as,

WVL_SYS_Actor(‘D0’, ‘C1’, ‘DrProgram1’, ‘S2’)dnl

• WVLSYS ActorProp(<actorID >, <propertyName >, <propertyValue >)

You can specify extra actor properties through this macro. For example,

WVL_SYS_ActorProp(‘D0’, ‘Port’, ‘4322’)dnl

Others Besides the above configurations of conceptual models, there may be some other configurations, such as
the macro extension included in the workload. For example, in the Squid/Apache examples, their workloads have the
format like

event(10,br10,GET(file76))
...

The file IDs like file76 included in the workload are not real filenames. It can be instantiated through the
configuration

define(‘files’, ‘WVL_SYS_Range(‘’, 1, 200)’)dnl
WVL_SYS_Foreach(‘i’, ‘define(‘file’i, dnl
‘http://’‘WVL_SYS_Echo(‘WVL_Host_’WVL_SYS_Echo(‘WVL_ComponentHost_’S0‘_host’)‘_address’)’:‘’dnl
WVL_SYS_Echo(‘WVL_Component_’S0‘_Port’)‘/test/’i‘.txt’)’, files)dnl

in the experiment configuration file.

12

3.4 Setup and Script Generation

The goal of the setup phase is to “compile” the experiment configurations into the control scripts that will be used for
experiment deployment and execution. Initially, the configurations are checked for consistency, and a per-experiment
Makefile is generated to control the rest of the process, which consists of actions 2 and 3 in Figure 3.

Action 2 tailors the workload based on the experiment configurations (such as the file instantiation discussed
above) and partitions the unified workload to per-actor workloads. Following that, in action 3, three tailored scripts,
a start script, a stop script, and a cleanup script, together with a tailored configuration file are generated for each
component in the SUE by applying macro expansion to the contents of the relevant attributes ofComponentType.
Additionally, a single master control script is created. This whole process is accomplished through the command
“weevil setup-<experiment name>”.

examples/apachesquid> ${execPath}/weevil help
Welcome to WEEVIL.

The following commands are available:

check-all - checks all experiments.
check-<experiment> - checks an experiment’s settings.
clean-all - cleans all experiments.
clean-<experiment> - removes all generated files for an experiment.
help - prints this help message
run-all - runs all experiments.
run-<experiment> - executes an experiment.
setup-all - sets up all experiments.
setup-<experiment> - generates all files for an experiment.
version - prints the version of weevil

The following experiments are available:

exp_10_10_10 exp_20_20_20 exp_30_30_30 exp_50_50_50 exp_100_100_100
exp_150_150_150 exp_200_200_200 exp_30 exp_60 exp_90 exp_150 exp_300
exp_450 exp_600

examples/apachesquid> ${execPath}/weevil setup-exp_10_10_10

3.5 Deployment and Execution

examples/apachesquid> ${execPath}/weevil run-exp_10_10_10

At this point, execution of the experiment is straightforward. The master control script deploys the SUE, per-
actor workloads, actors and scripts to the hosts, starts all the components, and then starts the actors. The actors begin
processing their workloads at a predetermined time that is selected by the master script. The master synchronizes
different actors and starts them at the same time. The master script waits for all the actors to complete processing their
workloads and then executes the stop scripts for each component. After all the components have been terminated, log
files are copied back to the master machine. The directory structure on each testbed host when weevil executes an
experiment is shown in Figure 6.

<componentType>

<componentID>

<experiment name>

<actorID>

theWeevilRoot software

theActorPath: storing workload, program and log files of the actor

theCompPath: storing start/stop script, config file,
and log files of the component

theSoftwarePath: storing binary distribution of the componentType

Figure 6: Run-Time Directory Structure

The property macrostheWeevilRoot, theCompPath, theSoftwarePath, and theActorPathare defined correspond-
ingly. (Please refer to the “Some Other Weevil-Defined Property Macros” reference manual.)

13

3.6 Clean up

After the experiment terminates, the temporary experiment files on testbed hosts could be cleaned up through the clean
scripts. For example,

examples/apachesquid> sh exp_10_10_10_S0_clean.sh
examples/apachesquid> sh exp_10_10_10_S1_clean.sh
...

Besides, the master directory could be cleaned up through

examples/apachesquid> ${execPath}/weevil clean-exp_10_10_10

14

