
WS-Guard
Enhancing UDDI Registries with Testing Capabilities∗

PLASTIC consortium†

July 24, 2007

WS-Guard (WS-Guaranteeing Uddi Audition at Registration and Discovery)
provides an implementation of the Audition Framework previously described in
the deliverable 4.1. Scope of this chapter is to give technical detail on how the
current implementation of the framework can be installed and used. However
for a detailed description of the framework please refer to deliverable 4.1.

This short installation and usage manual assumes that the reader has a good
knowledge on the basic standards enabling the WS vision. In particular to use
the tool the reader has to be acquainted with technologies and standards such
such as, XML, SOAP, WSDL and UDDI concepts.

1 Overview

The audition framework has been described in detail in the deliverable 4.1 and
in a couple of scintific papers [6, 7]. Furthermore in deliverable 4.1 it has been
illustrated the architecture of a real implementation of the framework with re-
duced capabilities with respect to the one presented in [6, 7]. The simplification
concerns checks carried on by services receiving invocation by the service under
evaluation.

Implementing the framework one of the main objective has been to reuse
as much as possible available technologies and to refer to affirmed standards in
the WS domain. To set up and use WS-Guard it is then necessary to have a
basic knowledge and experience with the following technologies, in addition to
the basic ones mentioned above:

• Tomcat [3]: Apache Tomcat is a web container developed at the Apache
Software Foundation (ASF). Tomcat implements the servlet and the JavaServer
Pages (JSP) specifications from Sun Microsystems, providing an environ-
ment for Java code to run in cooperation with a web server. Tomcat also
includes its own internal HTTP server.

• jUDDI [2]: this is an Apache open source Java implementation of the
UDDI 2.0 specification. The standard UDDI functionality are exposed

∗part of this work has been developed by Federica Ciotti working at her Master Thesis [8]
†for any inquiry please report to andrea.polini@unicam.it

1



using servlet based technologies requiring to set up a servlet container at
priori. To store all the data structure foreseen by the UDDI specification
jUDDI relies on the availability of a DBMS. In principle any DB for which
JDBC drivers are available can be used for such purpose. Nevertheless the
WS-Guard implementation has been tested only using a MySQL server.

• UDDI4J [4]: this is a Java class library that provides an API to interact
with a UDDI registry. Using such a library it becomes much mode easier
to interact with a UDDI server to publish and discover services.

• Axis2 [1]: Axis2 is the Apache implementation of a SOAP container.
Using Axis the developer will not be overwhelmed with the generation
and parsing of SOAP messages. Development and deployment of a Web
Service is extremely simplified using Axis. In particular service can be
directly derived by a java class through the generation of a corresponding
WSDL description (using an enclosed tool called Java2WSDL) and the
definition of a WSDD (Web Service Deployment Descriptor) that provides
directives to Axis on how to expose the defined interface and to invoke the
implemented methods. At run time Axis is mainly composed of a servlet
that then have to be deployed within a servlet container such as Tomcat.

WS-Guard applies known methodologies for model based testing derivation
and execution. In particular it assumes that a Service State Machine is available
for the service under registration. Such SSM will be provided to a service
encapsulating the JAmbition library and that at the same time will be able to
make invocations on the servive under evaluation.

2 Technical description

In order to set up the environment to run WS-Guard all the technologies referred
above have to be downloaded and correctly installed. In particular WS-Guard
assumes the availability of a correct installation of the Apache Tomcat servlet
container, on which jUDDI and Axis2 have been previously deployed. At the
same time, in order to correctly derive test cases and execute them against
the service under evaluation, it is assumed that an instance of a tester service,
encapsulating JAmbition, is available at the following address:

http://pc-dispo5.isti.cnr.it:8080/Ambition2/AmbitionService
As described in deliverable 4.1 WS-Guard relies on an augmented description
model for registered services providing, in particular, behavioural definitions of
the service. In the current implementation the model is specified using Service
State Machine (SSM). Such models are stored in the WS-Guard registry through
the use of tModel data structures as defined in the UDDI 2.0 specification. For
detail on SSM specification see [5].

SSM format contains information that put in relation a behavioural specifi-
cation with a service port implementing it. Figure 1 shows the usual mapping
of WSDL data to UDDI data structures. However in order to explicitly include

2



Figure 1: WSDL to UDDI mapping

support for SSM specification within a UDDI registries it has been necessary
to revise the mapping that has been redefined according to what is shown in
Figure 2.

The additional information and relation are managed by the WS-Guard
implementation and no additional effort is required to developers of service to
be registered within a WS-Guard registry.

Finally in order to recognize invocations on the inquiry interface fired by a
service under evaluation WS-Guard needs to recognize the sender of the inquiry
message. In general SOAP messages are sent without including this information
and the sender of a message can be recognized only at the transport layer, for
instnace through specific fields of the HTTP packet. Nevertheless WS-Guard
require to manipulate this information at the application level. To do this it
assumes that each message exchange with possible clients follow formatting rules
defined by the WS-Addressing specification [9]. Figure 3 shows how, according
to the “WS-Addressing - SOAP binding” W3C recommendation [10], the sender
can be specified within the header of a SOAP message.

The current implementation of WS-Guard has been tested using the follow-
ing configuration:

• Sun Java version jdk 1.5.0 11 (with version 1.6.* we experimented some
problems with the combined use of UDDI4J)

• Apache Tomcat version 6.0.7

3



Figure 2: SSM/WSDL to UDDI mapping

• Apache Axis2 version 1.1.1

• Apache jUDDI version 0.9rc4

• UDDI4J version 2.0.5

• MySQL version 5.0

4



Figure 3: Sender reference specification within a SOAP header

2.1 Installation

Given the pre-requisites specified in the previous sections, concerning the avail-
ability of a running tomcat server on which required libraries have been de-
ployed, the installation of WS-Guard is extremely easy. WS-Guard has been
implemented as a standard Web Service, therefore using it, will only require
to deploy the file containing the service on the correct tomcat directory. In
particular to run WS-Guard you have to perform the following steps.

1. deploy the service into Tomcat copying the UDDIProxyService.aar in the
folder:
apache-tomcat-6.0.7/webapps/axis2/WEB-INF/services

2. Check that the deployment has been correctly performed. If your Tomcat
configuration allows hot-deployment just open the browser at the address:
http://localhost:8080/axis2/services/listServices
In case hot-deployment is not supported restart the server and access the
page previously indicated.

3. Since UDDIProxyService.aar is an Axis2 service group containing both
the Publish and the Inquiry UDDI Web service, the two services should
be present in the service list as two separate services, as show in the
screenshots of Figure 4 and 5.

The content of the UDDIProxyService.aar can be explored using any pro-
gram suitable for compressing files. The content is structured in 5 main di-
rectories. The lib directory contains the library required by the WS-Guard
service to correctly run. The directories org, uddi org, and utils contain the
implementation of the service. The structure of the file follows the guidelines
defined for the deployment within the Axis2 container. The deployment into
another WS technology will probably require to revise the file structure.

Finally in order to create, within the DB, the necessary data structure to
store and manipulate SSM information, it is necessary to run the script:
ssmTmodels.sql

5



Figure 4: WS-Guard publish interface

Figure 5: WS-Guard inquiry interface

2.2 Usage

WS-Guard provides a ready to use UDDI registries with testing capabilities.
Differently from a jUDDI registries functionality are exposed directly with web
service interfaces. The interaction with WS-Guard have to follow the rules
defined above in particular SOAP messages must contains the sender address
in the header section.

The directory client contains the code for a generic simple client that can be
used to acquire a better understanding on the usage of the WS-GUard registry.
Under Linux the client can be launched using the command:

sh startClient.sh
available in the directory client

6



3 Planned improvements

WS-Guard will not be further developed within PLASTIC. Currently among
the various case studies under development within PLASTIC, no one seems
to show the necessity for having a directory service with testing capabilities.
This chapter has been enclosed mainly for completeness with respect to the
testing phases illustrated in the deliverable 4.1. Nevertheless there are several
possibilities to extend the current implementation of the framework in particular
in order to include and improve mechanisms for usage based checking. Such
mechanisms refer to the possibility that services invoked by the service under
audition check if it make correct invocation with respect to the protocol (order
of messages) and/or expected pre-conditions. Exptensions/improvements to the
current implementation of the framework will have to be planned in case WS-
Guard will be adopted in one or more case studies.

References

[1] Apache axis2. on-line at: http://ws.apache.org/axis/.

[2] Apache jUDDI. on-line at: http://ws.apache.org/juddi/.

[3] Apache tomcat. on-line at: http://tomcat.apache.org/.

[4] UDDI4J. on-line at: http://uddi4j.sourceforge.net/.

[5] AA.VV. Plastic deliverable 4.2. Technical report, ISTI-CNR, July, 31st
2007.

[6] A. Bertolino, L. Frantzen, A. Polini, and J. Tretmans. Audition of Web Ser-
vices for Testing Conformance to Open Specified Protocols. In R. Reussner,
J. Stafford, and C. Szyperski, editors, Architecting Systems with Trustwor-
thy Components, LNCS 3938, 2004.

[7] A. Bertolino and A. Polini. The Audition Framework for Testing Web
Services Interoperability. In Proc. 31st EUROMICRO Conf. on Sw Eng.
and Advanced Applications (EUROMICRO–SEAA 2005), pages 134–142.
IEEE Computer Society, 2005.

[8] Federica Ciotti. WS-Guard —Enhancing UDDI Registries with on-line
Testing Capabilities. Master’s thesis, Department of Computer Science,
University of Pisa, June, 8th 2007.

[9] W3C. Web service addressing (ws-addressing) specfication. on-line at:
http://www.w3.org/Submission/ws-addressing/, 2004.

[10] W3C. Web Service Addressing 1.0 - SOAP Binding. on-line at:
http://www.w3.org/TR/ws-addr-soap/, 2006. W3C Recommendation.

7


