
Manual for Jambition (Version PLASTIC)
Model-Based Testing of Stateful Web Services

Lars Frantzen1,2

1 Instituto di Scienza e Tecnologie della Informazione “Alessandro Faedo”
Consiglio Nazionale delle Ricerche, Pisa – Italy

lars.frantzen@isti.cnr.it
2 Institute for Computing and Information Sciences
Radboud University Nijmegen – The Netherlands

lf@cs.ru.nl

Abstract. Jambition is a prototype tool to automatically test the functionality of stateful Web Ser-
vices based on Service State Machine (SSM) specifications. SSMs are similar to UML state machines,
but tailored to the domain of Web Services. They have a precise semantics and are especially suited
to perform Model-Based Testing. SSMs specify a single port type. The Web Service to be tested is
assumed to be passive, meaning that only request-response and one-way operations are defined in
the corresponding WSDL. Jambition supports a subset of the XML-Schema data types. This short
manual briefly motivates and explains the tool and the specifications needed to perform model-based
testing of a Web Service port.

1 Overview

Every Web Service provides a set of operations to its potential users. To know which oper-
ations are available, an interface specification is needed. Commonly, Web Service interfaces
are specified in the Web Service Description Language (WSDL).

For instance, a Web Service representing a warehouse may offer operations to check the
availability of products, and to order such products. In the first case, an object representing
a quote request is sent, and an object representing a quote is returned. The corresponding
WSDL file makes the signature of these operations public. This information is sufficient to
connect to the Web Service, and to invoke the operations, but it does not give any kind
of semantic information. For instance, the warehouse may only accept quote-requests of a
certain quantity. Or it may only allow to order products when the availability has been
requested beforehand. Or it may guarantee that every offered quote deals with the same
quantity as the requested quote has indicated. WSDL files are not intended to provide such
kind of information.

One natural way to extend a Web Service description in this direction is to use state
machines. Jambition uses a dedicated variant of state machines which is especially useful
for Model-Based Testing – Service State Machines (SSM). Such a state machine can be
used to express constraints on the data as it is passed via the operations, and it gives a
legal ordering of the operation invocations. Hence, properties like the ones stated above
for the warehouse can be expressed via SSMs.

Such an SSM model can suit several needs. For instance, it gives a specification of the
dynamic aspects of the Web Service invocations. A user of the Web Service knows which

operations are allowed to be invoked at what point in time. She also knows the restrictions
on the data to be sent and received. SSMs are a valuable means to extend Web Service
specifications.

Furthermore, an SSM can be used to automatically test a Web Service. This is what
Jambition does. It takes a WSDL and an SSM specification of a Web Service as input.
Based on these it fully automatically generates invocations to the Web Service, receives
the returned messages, and checks if this data is conforming to the SSM specification.

Following the warehouse example, Jambition will respect the protocol as it is encoded
in the SSM. For instance, it will always check the availability before making an order. It
will also respect the data constraints, for instance making orders with a quantity of at
least three products. With respect to testing, Jambition will receive the responses of the
operation calls it makes, and then check if also the warehouse respects its constraints on
the data. For instance, Jambition will check if the warehouse makes only offers for the
requested products.

If Jambition spots a failure it will report so and stop the testing. While no failure
is found, it does a random walk through the SSM, meaning that when there are several
inputs specified, it chooses one randomly. With respect to the parameters of operations,
Jambition only chooses data values which respect the constraints (like a quantity ≥ 3).
Usually the first solution of the constraint is chosen (like quantity = 3).

To visualize and to keep track of how the test proceeds, Jambition offers a GUI which
monitors the testing events. It is also possible to log the ongoing testing to rotating log
files. Furthermore, Jambition can be connected to the open source tool Quick Sequence

Diagram Editor, which displays the communication between Jambition and the Web Ser-
vice in real time as an UML sequence diagram.

2 Technical info

Intended audience Developers of stateful Web Services
License GPLv3
Software Java 6 Runtime Environment (mandatory), Minerva library [8] (mandatory),

treeSolver [7] (mandatory), dot [3] (optional), Quick Sequence Diagram Editor [6] (op-
tional). The treeSolver is available for Linux and Windows. Other operating systems
are supported by recompiling. Ideally, the Web Service to be tested should be deployed
on a Glassfish [1] server. Other applications servers may demand minor adaptations of
Jambition.

Download The official version can be retrieved at [8]
Future Tasks SSMs can in principle also be used to model the communication between

several Web Services. To do so they have to involve the message flow at several ports.
Testing based on such multi-port SSM would allow to test more complex scenarios like
coordinated and composed Web Services.
Many Web Services use lists as data types. Lists correspond to an unbounded sequence
in XML, which is not supported by the current version. Supporting lists is another
eligible future step.

2

With respect to the testing itself, the purely random approach might not always be
satisfactory. Specific coverage criteria can be conceived.

The constraint solving can be more flexible and general. For instance, dealing with
negative integers can be achieved by changing the underlying constraint solver. Also, a
“first solution found” approach is sometimes too restrictive.

Bugs Jambition in its current version is not always very helpful in providing informa-
tion when something is/goes wrong. Running it via a command-line is definitely rec-
ommended to at least see potential exceptions which are not reported by Jambition.
Several features are experimental, and several features are missing to make it applicable
for the general case.

Contact Lars Frantzen<lars@frantzen.info>

3 Deployment

The relevant concepts of Jambition are depicted in Fig. 1. The structural aspects (data

SSM object

Web Service

describes structural aspects
and binding of

describes behavioral aspects of

JAmbition

tests

structural aspects behavioral aspects

binding

structural and
behavioral aspects

WSDL
instance

SSM
instance

Fig. 1. Jambition Concepts

types, messages, operations, port types) of the Web Service to be tested are described in a
WSDL instance. The behavioral aspects (states of the Web Service, ordering of invocations,
constraints on the data flow) are described in an SSM instance. Both aspects are combined
together in an SSM object. This object is the main reference of Jambition to do the

3

automatic testing. Furthermore, the binding information of the WSDL file (service, port)
is used to physically connect to the Web Service.
To model the SSM, Jambition offers two ways:

– the SSM can be described textually in an XML document
– the SSM is visually designed with the MagicDraw [5] tool, a commercial UML modeler

In this manual we will only describe the XML-based option. Using MagicDraw to model
SSMs is described in the manual of the Minerva [8] library. When using an XML description,
Jambition needs four inputs, see Fig. 2.

Web Service

describes structural aspects
and binding of

describes behavioral aspects of

JAmbition

tests

URL

WSDL
instance

SSM
instance

Service
Port URL

Fig. 2. Jambition Inputs

1. The URL of the WSDL instance
2. The service name of the Web Service to be tested as being given in the WSDL instance

(since a single WSDL can define several services)
3. The port name of the Web Service to be tested as being given in the WSDL instance

(since a single WSDL can define several ports per service)
4. The URL of the XML SSM instance

Based on these inputs, the SSM object is generated and the testing can be started.

3.1 Install

Jambition is written in Java 6, hence it needs a Java 6 JRE installed. It comes as a
Jambition.zip archive. Within the archive there is the Jambition directory. Just extract
this directory to a desired place.

To do anything useful, Jambition needs the Minerva [8] library, and all the libraries
Minerva brings along. Minerva can be downloaded here:

http://plastic.isti.cnr.it/wiki/tools

In the Minerva archive you find the minerva.jar, and several other libraries in its lib

directory. Copy all these libraries into the lib directory of the Jambition directory.

4

http://plastic.isti.cnr.it/wiki/tools

Jambition needs access to a constraint solver to do the testing. It uses GNU Prolog [2]
for this purpose. It is necessary to install and run the treeSolver program, which opens
a socket connection to the constraint solver of GNU Prolog (which is not necessary to be
downloaded separately). treeSolver can be freely downloaded here:

http://www.cs.ru.nl/~lf/tools/treesolver/

The web page provides executables for Windows and Linux. Also the source code is avail-
able, so it can be compiled for several other operating systems, see http://www.gprolog.

org/#platform. The treesolver gets as only input the socket-port to open. Before start-
ing Jambition, invoke treeSolver for instance with the port number 60002. You should
get something like:

user@pc-plastic:~$ treeSolver 60002

treeSolver V180607

By Lars Frantzen (lars@frantzen.info)

A socket interface to the constraint solver of GNU Prolog

GNU Prolog is copyright (C) Daniel Diaz

Listening on pc-plastic port 60002

A tool which is not mandatory for Jambition, but useful to visualize the testing process,
is the Quick Sequence Diagram Editor - sdedit [6]. It is written in Java and can be
freely downloaded here:

http://sdedit.sourceforge.net/

After sdedit is launched, turn on its real-time server by choosing in the Extras menu
Start/stop RT server. For the socket-port accept the suggestion 60001.

Another tool which is not mandatory for Jambition, but useful to visualize the SSM, is
dot [3]. It is part of the Graphviz toolsuite. Binaries for Windows and Linux can be freely
downloaded here:

http://www.graphviz.org/

Now Jambition can be launched. Within the directory there is the Jambition.jar archive.
A simple double click should start Jambition on all common operating systems. To start
it from a command-line, do a java -jar Jambition.jar. See the screenshot in Fig. 3.

3.2 Configure

Via the Jambition menu the Preferences window can be displayed, see the screenshot in
Fig. 4. We explain the options from top to bottom.

At the top the socket of the treeSolver can be modified. The default values here are
port 60002 on the local host. The option Always New Inputs is experimental, it means
that whenever Jambition has to find a solution for a constraint, it tries to find a new
solution. For instance, the constraint quantity ≥ 3 will always be solved by choosing
quantity = 3, since this is the first solution found. This may not always be desirable,
turning this option on will find the solutions 3,4,5, etc. But this generates very huge and
inefficient constraints, so this option should be treated with care.

5

http://www.cs.ru.nl/~lf/tools/treesolver/
http://www.gprolog.org/#platform
http://www.gprolog.org/#platform
http://sdedit.sourceforge.net/
http://www.graphviz.org/

Fig. 3. Jambition Initial Screenshot

Next the sdedit socket can be modified. The Enabled option allows to turn on and
off the usage of sdedit. This means that Jambition does not send the testing messages to
the sdedit tool, which can nicely display those in form of a sequence diagram. Still, it is
possible to generate the input for sdedit later, for instance when a failure was found. To
do so it is necessary to turn on the Remember Trace option.

Jambition logs per default to its Monitor window. This can be turned off. Note that
logging to the Monitor increasingly consumes memory since the window remembers all
test events. Instead, or additionally, it is possible to log to rotating log files. The name of
the file, the bytes per file, and the number of files can be set.

Finally, the Debug Mode can be turned on or off. This means that additional information
is logged, for instance the exchanged SOAP messages. All options can be reset to its default
values, and saved.

6

Fig. 4. Jambition Preferences Screenshot

4 Specifying the Web Service

4.1 Web Service Description Language

The structural aspects (data types, messages, operations, port types) of the Web Service to
be tested are described in a WSDL instance. Also the binding information is encoded here.
Normally, WSDL files are automatically generated by the IDE which is used to develop
the Web Service. To define the data types of the message parameters, commonly the data
types of XML Schema are used in the WSDL.

XML Schema Simple Types Jambition supports the following simple types:

– xs:boolean
– xs:integer
– xs:string
– xs:enumeration (a restriction on xs:string)
– xs:double

7

Two limitations are important to note. Firstly, Jambition can only deal with positive
integers. This is due to the fact that GNU Prolog (which is used by the treeSolver) can
only solve constraints over positive integers.

Secondly, the support for doubles is very limited. Constraint solving over double vari-
ables is not feasible in the way Jambition needs it. What Jambition does is supporting
double variables with a fixed precision. For instance, doubles with a fixed precision of two
positions after the decimal point can be used to model amounts of money. Such “fake” dou-
bles can be mapped internally to integers. But this mapping easily leads to large integers,
which may be too large again for the constraint solver. In its current version Jambition
assumes a fixed precision of two positions after the decimal point.

XML Schema Complex Types Complex types are for instance used to represent classes
of Object-Oriented languages in the WSDL. For instance, given a Java method which
returns an object of class c. The class c has two fields. If this method is exposed as a
Web Service method, the corresponding WSDL can define a complex type for c which is
a sequence of two elements representing the two fields. Jambition supports such complex
types. Jambition does not support elements in a sequence which are of the kind maxOccurs

= "unbounded". Such elements are used to model, for instance, lists.

WSDL Operations Four kinds of operations can be defined in a WSDL:

– request-response
– one-way
– solicit-response
– notification

Jambition does only support the first two kinds — request-response and one-way. We call
such a service a passive service since it does never send messages actively, only after being
requested.

SOAP Binding The XML parameter mapping is defined by the soap:body use and the
soap:binding style attributes. Jambition assumes that:

– use = "encoded" or
– use = "literal" and style = "document" and each message has exactly one part

called parameters.

4.2 Service State Machines

The behavioral aspects (states of the Web Service, ordering of invocations, constraints on
the data flow) are described in an SSM instance. An SSM is a state machine, consisting
of typed variables, states, and transitions between the states. Every transition consists of
these elements:

1. The state where the transition starts.

8

2. The name of a WSDL operation.
3. The kind of the corresponding message. This can be either input or output for request-

response operations, and is always input for one-way operations. A special kind is
unobservable, which defines a switch which does not corresponds to any operation, it
is taken by the SSM without an external trigger. Thus. it does not send or receive any
message.

4. A guard which restricts the conditions under which the transition can be executed. The
language of the guard is described below.

5. An update of the variables.

Every SSM has an initial state.

The Language of the Guards There are five kind of literals, i.e. constants of a certain
type:

– Integer literal – a numberstring (e.g. 3423432)
– Boolean literal – true or false
– Double literal – numberstring followed by a dot ’.’ and optional another numberstring

(e.g. 23.54)
– String literal – string between double quotes, e.g., “Hello World”
– Enumeration literal – a string of the form element@enumname, where enumname is

the name of an enumeration type, and element one of its elements, e.g. BOOK@product

An identifier is a name of a variable. If a variable has a complex type, then one can refer
to the fields by the dot-notation, e.g. q.product. Every literal and identifier are expressions
which have a corresponding type, i.e. one of integer, boolean, float, string, complex or
enumeration. One can combine literals and identifiers via operations, yielding more complex
expressions, which again have a type. Next we mention the operations currently supported
by the parser. By number we mean integers or doubles. Note that here by writing for
instance boolean or number we refer to any expression of this type.

First we mention the operations which lead to an expression of type boolean:

– == compares booleans, numbers, strings and enumeration instances for equality
– != compares booleans, numbers, strings and enumeration instances for inequality
– < compares numbers for being less than
– <= compares numbers for being less than or equal
– > compares numbers for being greater than
– >= compares numbers for being greater than or equal
– && the logical and of two booleans
– || the logical or of two booleans
– ! the logical not of a boolean

Next we mention the operations which lead to expressions of type integer or double:

– ++ increments (+1) an integer

9

– -- decrements (-1) an integer
– + adds numbers or strings (i.e., a concatenation of two strings)
– - subtracts two numbers
– * multiplies two numbers
– % The remainder operator for numbers
– / divides two numbers

A guard is an expression of type boolean. Sometimes one wants to express an empty
guard, meaning an expression which has the logical value always true. This cannot be done
by giving an empty string, nor by writing just the boolean literal true, one has to write
true == true here. One also cannot just mention the name of a variable of type boolean
like p or !p, it is necessary to write p == true or p == false.

Variable Updates There is another operator we have not mentioned yet, it is the assign-
ment operator ’=’. Here we assign a value to a variable. An update can consist of several
such assignments, but one can also have no assignment at all by giving the empty string
“”, meaning that all variables remain unchanged. All assignments must be terminated by
a semicolon ;

Designing SSM in MagicDraw One way to design an SSM is via the MagicDraw tool.
This is explained in the documentation of the Minerva library.

Defining SSM directly in XML Jambition expects an instance of an XML schema for
SSM called SP-SSM. After giving the the full schema it is further explained below. The
schema-file is also part of the Jambition archive.

An XML Schema for SSM

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace=

"http://frantzen.info/testing/ssmsimulator/schema/"

xmlns:tns="http://frantzen.info/testing/ssmsimulator/schema/"

elementFormDefault="qualified">

<xsd:annotation>

<xsd:documentation xml:lang="en">

A schema for Singleport Symbolic State Machines (SP-SSM).

Version: 0.1

Copyright (C) 2007,2008 Lars Frantzen

</xsd:documentation>

</xsd:annotation>

10

<xsd:element name="spssm" type="tns:SPssm"></xsd:element>

<xsd:complexType name="SPssm">

<xsd:sequence>

<xsd:element name="wsdlURI" type="xsd:anyURI"/>

<xsd:element name="porttype" type="xsd:token"/>

<xsd:element name="states">

<xsd:complexType>

<xsd:sequence maxOccurs="unbounded">

<xsd:element name="state" type="xsd:token"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="initialState" type="xsd:token"/>

<xsd:element name="variables">

<xsd:complexType>

<xsd:sequence maxOccurs="unbounded">

<xsd:element name="var" type="tns:Variable"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="switches">

<xsd:complexType>

<xsd:sequence maxOccurs="unbounded">

<xsd:element name="switch" type="tns:Switch"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="Variable">

<xsd:sequence>

<xsd:element name="name" type="xsd:token"/>

<xsd:element name="type" type="xsd:token"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="Switch">

<xsd:sequence maxOccurs="1">

<xsd:element name="from" type="xsd:token"/>

<xsd:element name="operationName" type="xsd:token"/>

<xsd:element name="kind" type="tns:Kind"/>

<xsd:element name="restriction" type="xsd:string"/>

<xsd:element name="update" type="xsd:string"/>

<xsd:element name="to" type="xsd:token"/>

11

</xsd:sequence>

</xsd:complexType>

<xsd:simpleType name="Kind">

<xsd:restriction base="xsd:string">

<xsd:enumeration value="input"/>

<xsd:enumeration value="output"/>

<xsd:enumeration value="unobservable"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:schema>

Explanation of the Schema
We describe its elements:

– <wsdlURI> Every SP-SSM instance specifies a port-type which is given in an external
WSDL file. This external file is referenced by this tag via an URI. For Jambition, this
tag has no relevance.

– <porttype> Here the specific port-type from the referenced WSDL is named (there
could be several in the WSDL). For Jambition, this tag has no relevance.

– <states> Here all the state-names are listed.

– <initialState> The name of the initial state is given here.

– <variables> Here all the variables are listed.

• <name> Every variable has a name.

• <type> Every variable has a type. This is either one of the XML schema simple
types like xs:boolean, or the name of a complex type or an enumeration. In case
of a complex type or an enumeration the namespace indicator must be the same as
the target namespace of the referenced WSDL.

– <switches> Here the SSM transitions, called switches, are given.

• <from> This is the state-name where the switch starts.

• <operationName> This is the name of the operation (as defined in the WSDL) where
the switch-message belongs to.

• <kind> This is he kind of the message which is transported by this switch. For every
operation this can be either input or output. A special third kind is unobservable
which denotes an internal message which is not observable at the interface.

• <restriction> This is guard.

• <update> This is the variable update.

• <to> This is the state-name where the switch leads to.

Note that especially when dealing with <restriction> and <update> elements there may
be the need to map special characters like ’&’ or ’<’ to a different representation in the
schema instances. The next section gives an example instance of this schema.

12

5 The Warehouse Example

In this section a simple example is given which demonstrates the usage of Jambition. We
follow here again the warehouse scenario. We have seen that Jambition needs as input the
WSDL file, and an SSM specification, of the Web Service to be tested. Since the WSDL
file is usually generated automatically by some programming language specific tool, we
start this example by showing the warehouse operations as Java methods. Note that for
Jambition it does not matter how the WSDL was generated, by a Java specific tool, another
language’s tool, or manually.

The Warehouse Web Service in Java We use here the JAX-WS [4] implementation
to handle Web Services in Java. We assume the familiarity of the reader with the JAX-WS
(or a similar) package, and will not explain its usage further.
The warehouse service shall offer three operations, which appear in Java as methods:

– Quote checkAvail(QuoteRequest r)

This operation allows a user of the warehouse to request a quote for a given product and
quantity. This is realized via a parameter of type QuoteRequest having the attributes
Product and quantity. We assume the class Product to be a simple enumeration, and
quantity to be an integer. As a return value, this operation shall send a Quote object,
which consists also of a Product and quantity; additionally it has the attributes price
of type double, and refNumber of type integer.

– void cancelTransact(int ref)

This operation shall be invoked if the user rejects a quote offered. To do so, the user
sends as a parameter the reference number which has been issued in a corresponding
quote (see attribute refNumber of the Quote object in operation checkAvail above).

– void orderShipment(int ref, Address adr)

This operation shall be invoked if the user accepts a quote offered. To do so, the user
sends also here as a parameter the reference number which has been issued in a corre-
sponding quote, and a shipment Address object.

Next we show the signatures of the corresponding Java methods: The complete Java files
are also part of the Jambition archive.

@WebMethod(operationName = "checkAvail") public Quote

checkAvail(@WebParam(name = "r") QuoteRequest r)

@WebMethod(operationName = "cancelTransact")

@Oneway

public void cancelTransact(@WebParam(name = "ref") int ref)

@WebMethod(operationName = "orderShipment")

@Oneway

public void orderShipment(@WebParam(name = "ref") int ref,

@WebParam(name = "adr") Address adr)

13

The auxiliary classes and their attributes are as follows:

public class QuoteRequest {

Product product;

int quantity;

...

}

public enum Product {

foo,

bar

}

public class Quote {

Product product;

int quantity;

double price;

int refNumber;

...

}

public class Address {

String firstName;

String lastName;

...

}

The Warehouse WSDL We assume here that the reader has a basic understanding of
WSDL files and XML Schema. We have created the Java-files in a package called services.
Next we generate the corresponding WSDL for the warehouse Web Service, which is one
of the input files of Jambition. Important for the further modeling of the service are the
operation names, and the names of the operation parameters as they appear in the WSDL.
The operations names usually match exactly the Java method names. The parameter names
should also match the parameter names given in the Java code (in case of JAX-WS this
name can be explicitly set via the @WebParam annotation, see above). A special case is the
return parameter. In Java this parameter has no name on its own, just a type. For instance,
the method checkAvail returns a Quote object, but this return parameter has no extra
name. In the WSDL, also these returned parameters have names.

Let us check the WSDL generated by JAX-WS. We only give the relevant parts, here.
First we check the definition of the messages and operations. In a WSDL, every operation
consists of messages. Input parameters are modeled by input messages, and the returned
parameter is modeled via an output message. In case of a Java void operation just an
input message is present. In the WSDL this looks like this:

14

<message name="checkAvail">

<part name="parameters" element="tns:checkAvail"/>

</message>

<message name="checkAvailResponse">

<part name="parameters" element="tns:checkAvailResponse"/>

</message>

<message name="cancelTransact">

<part name="parameters" element="tns:cancelTransact"/>

</message>

<message name="orderShipment">

<part name="parameters" element="tns:orderShipment"/>

</message>

<portType name="Warehouse">

<operation name="checkAvail">

<input message="tns:checkAvail"/>

<output message="tns:checkAvailResponse"/>

</operation>

<operation name="cancelTransact">

<input message="tns:cancelTransact"/>

</operation>

<operation name="orderShipment">

<input message="tns:orderShipment"/>

</operation>

</portType>

We see here two things. First of all, the names of the operations equal the names of the Java
methods (the <operation name=XYZ"> attribute). Secondly, the definition of the message
parameters refers to XSD elements (e.g. tns:checkAvail). To find these elements, we next
check the definition of the types:

<types>

<xsd:schema>

<xsd:import namespace="http://services/"

schemaLocation="http://localhost:8158/WarehouseService.../>

</xsd:schema>

</types>

Here we see that the WSDL refers to an external XML Schema file which defines the types
(the schemaLocation). We check that file, next:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:tns="http://services/"

xmlns:xs="http://www.w3.org/2001/XMLSchema" version="1.0"

targetNamespace="http://services/">

15

<xs:element name="cancelTransact" type="tns:cancelTransact"/>

<xs:element name="checkAvail" type="tns:checkAvail"/>

<xs:element name="checkAvailResponse" type="tns:checkAvailResponse"/>

<xs:element name="orderShipment" type="tns:orderShipment"/>

<xs:complexType name="checkAvail">

<xs:sequence>

<xs:element name="r" type="tns:quoteRequest" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="checkAvailResponse">

<xs:sequence>

<xs:element name="return" type="tns:quote" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="orderShipment">

<xs:sequence>

<xs:element name="ref" type="xs:int"/>

<xs:element name="adr" type="tns:address" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="cancelTransact">

<xs:sequence>

<xs:element name="ref" type="xs:int"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="quoteRequest">

<xs:sequence>

<xs:element name="product" type="tns:product" minOccurs="0"/>

<xs:element name="quantity" type="xs:int"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="quote">

<xs:sequence>

<xs:element name="price" type="xs:double"/>

<xs:element name="product" type="tns:product" minOccurs="0"/>

<xs:element name="quantity" type="xs:int"/>

16

<xs:element name="refNumber" type="xs:int"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="address">

<xs:sequence>

<xs:element name="firstName" type="xs:string" minOccurs="0"/>

<xs:element name="lastName" type="xs:string" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<xs:simpleType name="product">

<xs:restriction base="xs:string">

<xs:enumeration value="bar"/>

<xs:enumeration value="foo"/>

</xs:restriction>

</xs:simpleType>

</xs:schema>

We find here the names of the parameters, and their corresponding XML-Schema types.
Summarized, we get:

– Operation checkAvail

Input message parameters: r of type quoteRequest

Output message parameters: return of type quote

– Operation cancelTransact

Input message parameters: ref of type xs:int

– Operation orderShipment

Input message parameters: ref of type xs:int and adr of type address

The corresponding complex types are:

– quoteRequest

Elements: product of type product and quantity of type xs:int

– quote

Elements: price of type xs:double, product of type product, quantity of type
xs:int, and refNumber of type xs:int

– address

Elements: firstName of type xs:string and lastName of type xs:string

This is very close to what we have written in the Java code. Still, it is necessary to check
the concrete names and types, since this is crucial for the definition of the SSM, as we will
see next.

Note: this information can also be automatically extracted and displayed by the
showWSDL tool. It is part of the Minerva archive.

17

The Warehouse SSM Now comes the part where we specify the dynamic aspects of the
warehouse via an SSM. Remember that an SSM consists of static constituents like types,
messages, parameters, and operations. This information is already present in the WSDL
file, as we have seen in the last section. Still to be modeled are the dynamic constituents
like states, and transitions between the states. SSMs can be seen as a dynamic extension of
a WSDL. They specify the legal ordering of the message flow at the service port, together
with constraints on the data exchanged via message parameters.

A SSM can store information in SSM-specific variables. Every SSM transition corre-
sponds to either a message sent to the service (input), or a message sent from the service
(output), or is unobservable. Furthermore, a transition can be guarded by a logical ex-
pression. After a transition has fired, the values of the variables can be updated. Take the
WSDL operation checkAvail. This request-response operations has an input message with
parameter r of complex type quoteRequest, and an output message return of complex
type quote. In the SSM we model the call of the checkAvail operation by two succeeding
transitions, the first representing the input message, and the second the output message.

Figure 5 shows the SSM we want to use for this example, which specifies the warehouse
service. What we specify here is the session protocol a user of the warehouse service has
to follow. Initially, the warehouse is in state 1. Now a user of the warehouse can invoke

1

2

checkAvail?<r:quoteRequest>
[r.quantity > 0]

qr = r;

checkAvail!<return:quote>
[return.product == qr.product &&

 return.quantity == 0 &&
 return.price == 0.0 &&
 return.refNumber == 0]

3

checkAvail!<return:quote>
[return.product == qr.product &&

 return.quantity == qr.quantity &&
 return.price > 0.0 &&
 return.refNumber > 0]

qi = return;

orderShipment?<ref:ST_Int,adr:address>
[ref == qi.refNumber]

cancelTransact?<ref:ST_Int>
[ref == qi.refNumber]

Fig. 5. The Warehouse SSM

the checkAvail operation by sending the corresponding input message with parameter r

of complex type quoteRequest. This corresponds to the transition from state 1 to state 2.
The first line of the label is checkAvail?<r:QuoteRequest>. This states that this transi-
tion refers to the checkAvail operation. The appended question mark indicates that here
the input message is modeled. The guard of the transition r.quantity > 0 restricts the

18

attribute quantity of parameter r to be greater than zero. After the transition has fired,
r is saved in the SSM-specific variable qr (which must also be of type QuoteRequest).
Next, the warehouse has to return a Quote object via the return parameter return. Two
things can happen. Firstly, the requested product may not be on stock with the requested
quantity. In this case a Quote object is returned with a zero quantity, refNumber and
price (transition from 2 to 1). Additionally it is ensured that the returned product at-
tribute is the same as the requested one. This is achieved by relating the returned attribute
product of return with the saved requested attribute product of qr: return.product ==

qr.product. Secondly, if the product is on stock, a Quote object is returned with the
same quantity as being requested, and a price and refNumber greater than zero (tran-
sition from 2 to 3). We save the issued quote in the SSM-specific variable qi. Not that
the appended exclamation mark indicates that these two transitions model possible out-
put messages of the checkAvail operation. Now again two things can happen. Either
the user of the warehouse decides to reject the quote. She invokes the one-way operation
cancelTransact by sending the message ?cancelTransact (rightmost transition 3 to 1).
Here she must refer to the correct issued reference number refNumber. Or she decides to
accept the quote. In this case, in addition to the correct reference number, an address must
be provided as a second parameter (leftmost transition 3 to 1).

Note that in the picture the XML Schema type xs:int appears as ST Int. This is
due to an automatic mapping of the XML Schema types to internal SSM types when the
WSDL is read by Jambition.

Denoting the SSM in XML We denote the SSM now directly in XML, meaning we
create an instance of the SP-SSM schema which denotes exactly the SSM from Fig. 5. The
following SSM XML file is also part of the Jambition archive.

<?xml version="1.0" encoding="UTF-8"?>

<spssm xmlns=’http://frantzen.info/testing/ssmsimulator/schema/’

xmlns:xsi=’http://www.w3.org/2001/XMLSchema-instance’

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:package=’http://services/’

xsi:schemaLocation=’http://frantzen.info/testing/ssmsimulator/schema/

file:///home/lf/NetBeans/Audition/.../SP-SSM.xsd’>

<wsdlURI>not needed</wsdlURI>

<porttype>not needed</porttype>

<states>

<state>1</state>

<state>2</state>

<state>3</state>

</states>

<initialState>1</initialState>

19

<variables>

<var>

<name>qr</name>

<type>package:quoteRequest</type>

</var>

<var>

<name>qi</name>

<type>package:quote</type>

</var>

</variables>

<switches>

<switch>

<from>1</from>

<operationName>checkAvail</operationName>

<kind>input</kind>

<restriction>r.quantity > 0</restriction>

<update>qr = r;</update>

<to>2</to>

</switch>

<switch>

<from>2</from>

<operationName>checkAvail</operationName>

<kind>output</kind>

<restriction>return.product == qr.product &&

return.quantity == qr.quantity &&

return.price > 0.0 && return.refNumber > 0</restriction>

<update>qi = return;</update>

<to>3</to>

</switch>

<switch>

<from>2</from>

<operationName>checkAvail</operationName>

<kind>output</kind>

<restriction>return.product == qr.product &&

return.quantity == 0 && return.price == 0.0

&& return.refNumber == 0</restriction>

<update></update>

<to>1</to>

</switch>

<switch>

<from>3</from>

<operationName>cancelTransact</operationName>

<kind>input</kind>

20

<restriction>ref == qi.refNumber</restriction>

<update></update>

<to>1</to>

</switch>

<switch>

<from>3</from>

<operationName>orderShipment</operationName>

<kind>input</kind>

<restriction>ref == qi.refNumber</restriction>

<update></update>

<to>1</to>

</switch>

</switches>

</spssm>

Starting Jambition, treeSolver, sdedit, and Checking the Preferences We now
have the necessary specifications ready – the WSDL and the SSM. We assume that the
corresponding warehouse Web Service is successfully deployed. We start Jambition and see
the main GUI (see Fig. 3). In the WSDL URL textfield we enter the URL of the WSDL, and
in the SSM URL textfield the URL of the SSM. Not that in case of a local file one can use
the file://PathToFile notation. Since a WSDL can in principle define several services
and ports, it is additionally necessary to name the specific service and port to be tested. If
unsure what to put here, consult here the WSDL. For our example the relevant WSDL-part
looks like this:

<service name="WarehouseService">

<port name="WarehousePort" binding="tns:WarehousePortBinding">

[...]

</port>

</service>

Hence, we put WarehouseService in the Service textfield, and WarehousePort in the
Port textfield.

Next we check the preferences by choosing Preferences from the Jambition menu.
For all preferences options we keep the default values. Make sure that the treeSolver is
running under the port given. Also start sdedit and make sure that its real-time server is
running on the right port (via its Extras menu item Start/stop RT server...). Close
the preferences.

Generating the SSM Object Now we are ready to generate the SSM object. We do
so by pressing the Generate SSM button. After a short while a little notification window
should report SSM successfully generated!. The Monitor of the Jambition GUI should
report something similar to:

21

08/10/07 11:54:10:161: treeSolver is bound to local port 59132

08/10/07 11:54:10:283: treeSolver sends: treeSolver V180607 ready

08/10/07 11:54:10:285: qsdeServer is bound to local port 56311

08/10/07 11:54:10:451: STSimululator ready.

The treeSolver reports something like Connected with 127.0.0.1, and sdedit shows
in a new tab called Jambition the two actors Jambition and SUT (which is the Web Service
Under Test).

Using dot to Visualize the SSM Note that after having successfully generated the
SSM object, the button dot Input is enabled. Pressing this button outputs the generated
SSM in a textual format understood by the dot tool from the Graphviz toolsuite. For our
example, we get this output in the Jambition Monitor:

digraph STS {

1 -> 2 [label = "checkAvail?<r:quoteRequest[product:product{bar,foo},

quantity:ST_Int]>\n[r.quantity > 0]\nqr = r;"];

2 -> 1 [label = "checkAvail!<return:quote[price:ST_PseudoPosDouble,

product:product{bar,foo},quantity:ST_Int,refNumber:ST_Int]>\n

[return.product == qr.product &&\n return.quantity == 0 &&\n

return.price == 0.0 &&\n return.refNumber == 0]\n"];

2 -> 3 [label = "checkAvail!<return:quote[price:ST_PseudoPosDouble,

product:product{bar,foo},quantity:ST_Int,refNumber:ST_Int]>\n

[return.product == qr.product &&\n return.quantity == qr.quantity

&&\n return.price > 0.0 &&\n return.refNumber > 0]\nqi = return;"];

3 -> 1 [label = "orderShipment?<ref:ST_Int,adr:address[firstName:ST_String,

lastName:ST_String]>\n[ref == qi.refNumber]\n"];

3 -> 1 [label = "cancelTransact?<ref:ST_Int>\n[ref == qi.refNumber]\n"];

}

Now one can copy-paste this into a text editor and save it as a file. Running the dot tool
on it generates a graph representing the SSM. Figure 5 shows a slightly simplified version
of the generated graph where the details of the complex types have been removed.

Testing the Warehouse Service Finally we are in the position to test if the warehouse
service does conform to the SSM specification we have developed. Let us recapitulate
what we have done so far. The initial assumption in this running example was that we
have developed a warehouse Web Service in the Java programming language. To access
this service the JAX-WS package automatically generates a corresponding WSDL file which
specifies the operations available at the service’s port, and its physical address (also called
the endpoint) of the service.

To specify dynamic aspects of the service we have additionally modeled an SSM. This
SSM specifies the legal ordering in which the warehouse operations must be invoked, and
restricts the data which is exchanged via the operations. On the one hand, the SSM specifies

22

a protocol for a potential user of the warehouse. For instance, it postulates that firstly the
checkAvail operation must be called with a positive quantity. On the other hand, the
SSM specifies a protocol to which the warehouse service itself must conform. For instance,
the quote returned by the checkAvail operation must always deal with the same product
that being requested.

In other words, the SSM deals with two actors. One is the user of the warehouse
invoking its operations. The other is the warehouse itself receiving and responding to the
operation calls. When testing the warehouse, Jambition is playing the role of the user of the
warehouse. Initially, being in state 1, the only specified call is checkAvail. To invoke this
operation, a parameter of type quoteRequest must be constructed. The guard additionally
restricts the field quantity to be greater zero (see transition from state 1 to 2). Jambition
will randomly choose a product (foo or bar). For the quantity, the first solution found
is quantity = 1. Jambition will always set the quantity to 1 unless the option Always

New Inputs is set in its preferences. In that case it will first choose a quantity of 1, then
2, and so on (this does only work for a limited number of steps in the current version).
With the constructed quoteRequest object it then invokes the checkAvail operation
on the service. Now, being in state 2, Jambition receives the quote object returned by
the warehouse. The SSM dictates, that this quote has to have a zero quantity, price, and
reference number (transition from 2 to 1), or the same quantity as requested and a positive
price and reference number (transition from 2 to 3). For both transitions must hold that
the quote’s product must be the same as the requested product. Jambition checks now,
which of the two cases holds for the received quote, and moves to the respective next state
(1 or 3). If none holds, a failure has been detected. For instance, this is the case if the
returned quote deals with a different product than requested. Or, if the quantity and price
are zero, but the reference number is not. Assuming the quote was correct and Jambition
moved to state 3, then it will next send either a cancelTransact or an orderShipment to
the warehouse (taking care of using the correct reference number). And so on.

While no failure is found, the testing continues. Jambition reports the currently achieved
state coverage (called location coverage) and transition coverage (called switch coverage) in
its window. If enabled, sdedit shows the messages exchanged in realtime. Figure 6 shows
a possible output of sdedit while testing the warehouse. The user can halt the testing
by pressing Stop Testing. Doing so enables the Detailed Coverage button. Pressing it,
detailed coverage information of the SSM are displayed (which state and which transition
has been visited how often up to now). The testing can be continued by pressing Continue

Testing, or ended by pressing End Testing.

6 Appendix

6.1 The Dumont Grammar in BNF

SwitchRestriction ::= BooleanExpression <EOF>

UpdateMapping ::= (VarAssignment)* <EOF>

VarAssignment ::= Id "=" TermExpression ";"

23

Fig. 6. The Quick Sequence Diagram Editor

BooleanExpression ::= LogicalOrExpression ("&&" LogicalOrExpression)*

LogicalOrExpression ::= LogicalNotExpression ("||" LogicalNotExpression)*

LogicalNotExpression ::= "!" LogicalNotExpression

| TermExpression TermEqualityExpression

| "(" BooleanExpression ")"

TermEqualityExpression ::= "==" TermExpression

| "!=" TermExpression

| "<=" TermExpression

| "<" TermExpression

| ">=" TermExpression

| ">" TermExpression

TermExpression ::= TermAddExpression

24

TermAddExpression ::= TermSubtractExpression

("+" TermSubtractExpression)*

TermSubtractExpression ::= TermMultExpression ("-" TermMultExpression)*

TermMultExpression ::= TermDivExpression ("*" TermDivExpression)*

TermDivExpression ::= TermModExpression ("/" TermModExpression)*

TermModExpression ::= TermUnaryExpression ("%" TermUnaryExpression)*

TermUnaryExpression ::= "++" TermUnaryExpression

| "--" TermUnaryExpression

| "(" TermExpression ")"

| PrimaryTermExpression

PrimaryTermExpression ::= Literal

| Id

Name ::= <IDENTIFIER> ("." <IDENTIFIER>)*

Id ::= Name

Literal ::= (<INTEGER_LITERAL>)

| (<BOOLEAN_LITERAL>)

| (<STRING_LITERAL>)

| (<ENUMERATION_LITERAL>)

References

1. GlassFish Application Server homepage. https://glassfish.dev.java.net.
2. GNU Prolog homepage. http://www.gprolog.org/.
3. Graphviz homepage. http://www.graphviz.org/.
4. JAX-WS homepage. https://jax-ws.dev.java.net/.
5. MagicDraw homepage. http://www.magicdraw.com.
6. Quick Sequence Diagram Editor homepage. http://sdedit.sourceforge.net/.
7. treeSolver homepage. http://www.cs.ru.nl/~lf/tools/treesolver/.
8. PLASTIC tools homepage. http://plastic.isti.cnr.it/wiki/tools.

25

https://glassfish.dev.java.net
http://www.gprolog.org/
http://www.graphviz.org/
https://jax-ws.dev.java.net/
http://www.magicdraw.com
http://sdedit.sourceforge.net/
http://www.cs.ru.nl/~lf/tools/treesolver/
http://plastic.isti.cnr.it/wiki/tools

